Wednesday, 4 October 2017

4 Periode Vektet Moving Average


Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. Når du beregner et løpende glidende gjennomsnitt, er gjennomsnittet i midtperioden fornuftig. I det forrige eksempelet beregner vi gjennomsnittet av de første tre tidsperioder og plasseres det ved siden av periode 3. Vi kunne ha plassert gjennomsnittet midt i tidsintervallet på tre perioder, det vil si ved siden av periode 2. Dette fungerer bra med ulike tidsperioder, men ikke så bra for jevne tidsperioder. Så hvor skulle vi plassere det første glidende gjennomsnittet når M 4 Teknisk sett ville det bevegelige gjennomsnittet falle på t 2,5, 3,5. For å unngå dette problemet glatter vi MAs ved hjelp av M 2. Dermed glatter vi de glatte verdiene. Hvis vi gjennomsnittlig et jevnt antall vilkår, må vi glatte de glatte verdiene. Følgende tabell viser resultatene ved å bruke M 4.What039s forskjellen mellom glidende gjennomsnitt og vektet glidende gjennomsnitt Et 5-års glidende gjennomsnitt, basert på prisene ovenfor, ble beregnet ved hjelp av følgende formel: Basert på ligningen ovenfor var gjennomsnittsprisen over perioden som er oppført ovenfor, 90,66. Bruk av bevegelige gjennomsnitt er en effektiv metode for å eliminere sterke prisfluktuasjoner. Nøkkelbegrensningen er at datapunkter fra eldre data ikke veier noe annerledes enn datapunkter nær begynnelsen av datasettet. Dette er hvor vektede glidende gjennomsnitt kommer til spill. Veidede gjennomsnitt gir tyngre vekting til mer gjeldende datapunkter siden de er mer relevante enn datapunkter i den fjerne fortiden. Summen av vektingen skal legge til opptil 1 (eller 100). Når det gjelder det enkle glidende gjennomsnittet, er vektene fordelt like mye, og derfor er de ikke vist i tabellen ovenfor. Sluttpris på AAPL

No comments:

Post a Comment